Deep Graph Mapper: Seeing Graphs through the Neural Lens

A cartoon illustration of Deep Graph Mapper (DGM).

Abstract

Graph summarisation has received much attention lately, with various works tackling the challenge of defining pooling operators on data regions with arbitrary structures. These contrast the grid-like ones encountered in image inputs, where techniques such as max-pooling have been enough to show empirical success. In this work, we merge the Mapper algorithm with the expressive power of graph neural networks to produce topologically-grounded graph summaries. We demonstrate the suitability of Mapper as a topological framework for graph pooling by proving that Mapper is a generalisation of pooling methods based on soft cluster assignments. Building upon this, we show how easy it is to design novel pooling algorithms that obtain competitive results with other state-of-the-art methods.

Publication
Frontiers in Big Data 2021, Topological Data Analysis and Beyond Workshop (NeurIPS 2020)